배운 내용/GCP
Google Cloud Platform(GCP, GCE)에 cuda, cuDNN, conda 설치
JooJY
2023. 7. 26. 16:22
반응형
1. CUDA 및 cuDNN 설치
GCE 사양
region: asia-northeast3-b
GPU: Nvidia-T4, num:1
CPU: n1-standard-4(vCPU 4개, 15GB 메모리)
Boot-disk: Ubuntu20.04LTS at least 30GB
Firewall: allow all
nvidia driver 및 cuda 설치
sudo apt install ubuntu-drivers-common -y
sudo apt install nvidia-driver-515 -y
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
환경 변수 설정
export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
# 설치 확인
nvcc --version
cudnn 설치
https://developer.nvidia.com/cudnn
CUDA Deep Neural Network
cuDNN provides researchers and developers with high-performance GPU acceleration.
developer.nvidia.com
cuda에 맞는 cudnn 다운로드 후 gce 폴더에 넣고 압축 풀기
tar -xvf cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz
sudo cp cudnn-linux-x86_64-8.5.0.96_cuda11-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-linux-x86_64-8.5.0.96_cuda11-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
cudnn 설치 확인
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
gce 껏다 다시 키기
sudo reboot
2. conda 설치
conda 다운로드(miniconda 해도 됨)
wget https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh
conda 설치
bash Anaconda3-2020.07-Linux-x86_64.sh
source ~/.bashrc
가상환경 만들기
conda create -n final python=3.9.7
conda activate final
프로젝트 repository clone하기
git clone https://github.com/boostcampaitech5/level3_cv_finalproject-cv-11.git
requirements 설치하기
pip install -r requirements.txt
반응형